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Digitizing art collections is a major challenge for many museums and
art galleries. To facilitate and accelerate cataloging photos of artworks,
we tackle two classification tasks from the art domain using deep learn-
ing: type classification and genre classification of artworks. To train our
models, we use the popular transfer learning approach. Since our training
dataset is highly imbalanced, our work focuses on coping with imbalanced
training data. Our results show that the transfer learning approach can
produce very good results even for small and highly imbalanced training
datasets. We observed that acquiring or generating additional training
data as well as certain data augmentation methods can slightly improve
training results. Over- and undersampling techniques, on the other hand,
do not seem to be necessary and did not provide a substantial benefit.
To optimize performance in both classification tasks, we experiment with
multiple training methods and model architectures. In this way, we obtain
good results in both tasks: In the type classification task, we achieve an
accuracy of over 99% and an F1-score above 97% for both the minority
and majority class. In the genre classification task, we achieve an accuracy
of over 96% and F1-scores ranging from 88% to 99% for the respective
classes.

1 Introduction

In recent years, many museums and art galleries have made great efforts to digi-
tize their collections. For example, Amsterdam’s Rijksmuseum [36, 44], London’s
National Gallery [33], Oslo’s National Museum [8, 43] and the J. Paul Getty Mu-
seum [14] have made significant parts of their art collections available online. Re-
cently, the COVID-19 pandemic has prompted further institutions to digitize their
collections [24, 4]. Digitization involves capturing high-resolution images of the
artworks [2, 35] and linking them to related information in digital repositories [31].
These repositories can not only facilitate researchers’ access to information [42],
but can also be used to provide digital content to museum visitors [1]. In addition,
digital collections play an important role in marketing and in digital selling of
prints and merchandise [1, 44].
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However, the creation of digital collections is a major challenge for many institu-
tions. Many museums and galleries own large collections but have limited human
and financial resources for digitization [1, 24]. In particular, cataloging photos
and updating existing records is expensive and laborious [1, 31]. During cata-
loging, photos of artworks are linked to metadata such as author, style, genre, and
type of artwork. Automated acquisition of these metadata using computer vision
techniques could greatly facilitate and accelerate the digitization of museum collec-
tions [29, 6, 32]. A wide range of research has already addressed this issue. Some
works rely on the extraction of image features and classify them using shallow
machine learning models such as SVMs or kNN classifiers [48, 38, 12]. The image
features used can be either low-level features such as color histograms and edge
maps [48], or feature maps extracted from convolutional neural networks [38, 6].
In contrast, another part of the existing work uses end-to-end deep learning mod-
els [41, 23, 37]. Training deep neural networks to classify artworks is challenging
because the available datasets are comparatively small [37] and in some cases un-
balanced [47]. Labeling of additional training data is often impractical as it requires
expert knowledge from the art domain [38, 7]. Therefore, the transfer learning
approach became popular in the art domain [7, 37, 23, 41]. In transfer learning,
the deep learning models are first pre-trained on large photo datasets such as Ima-
geNet with a different classification task. Subsequently, some layers of the models
are re-trained on the actual training set from the art domain to solve a classification
task for artworks [37].

This work applies the transfer learning approach to two classification tasks from
the art domain: In the first classification task, artworks are to be classified in terms
of their type as a painting or a drawing. To our knowledge, similar classification
tasks have been studied only by Sabatelli et al. [37] and Mensink et al. [29] so far.
The second task is a genre classification of artworks. Most existing work on genre
classification uses only the popular Wikiart dataset [38, 41], although additional
datasets with genre annotations are available [13, 16, 27, 34, 9]. In this paper, we
make use of several other datasets for training.

For both classification tasks, we systematically evaluate different architectures and
training methods. We investigate how different techniques for data augmentation
and different approaches for coping with imbalanced data affect model perfor-
mance. In addition, we study whether model performance can be improved by
ensemble learning. Through model optimization, we achieve human-like perfor-
mance in type classification, with F1-scores above 97 % for both classes on the test
set. In genre classification, we also achieve high performance, with F1-scores above
88 % for all classes on the test set.
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2 Related Work

Since the majority of available fine-art datasets contain metadata on style, artist,
genre, technique and material, research efforts have been predominantly focused
on style, genre, and artist classification [7]. These classification problems have
been addressed through two major methodological categories namely classical
approaches and deep learning-based techniques [39]. In classical approaches, im-
age features are extracted and classified using shallow machine learning models.
Feature extraction approaches are divided into feature engineering and feature
learning methods [32].

Feature engineering approaches. In feature engineering approaches, domain-
specific knowledge is used for transforming "low-level" feature sets such as brush
strokes and color into meaningful image features [38]: Florea et al. [12] use local
and global features in combination with shallow machine learning models like
SVM, Random Forest Models and k-Nearest Neighbor to classify artworks in terms
of the artistic movement. Other works use texture feature extractors that take into
account global color features and composition features to classify artworks based
on their genre [48].

Feature learning approaches. With the advancements of CNN-based feature
learning approaches, Cetinic et al. investigate the use of features derived from
pre-trained CNN layers [6]. Results indicate higher accuracies for "high-level"
CNN-based feature sets given the problem of genre classification compared to
"low-level" feature sets derived by Scale-Invariant Feature Transform (SIFT) [26]
and Histogram of Oriented Gradients (HOG) [10].

Deep learning-based approaches. Lecoutre et al. demonstrate the performance
of a residual neural network (ResNet50) and a pre-trained AlexNet for genre classi-
fication on the Wikiart paintings dataset, achieving an overall accuracy of more than
62% over 25 classes [23]. Emphasizing the importance of brush stroke in fine-art
classification, Huang et al. implement a two-channel deep residual network consist-
ing of a RGB channel and a brush stroke information channel. They achieve a test
accuracy of 68.96 % using a pre-trained ResNet50 [18]. Sabatelli et al. compare the
performance of transfer learning approaches that solely re-train the decision layer
of pre-trained CNNs with approaches that also retrain the convolutional layers [37].
While retraining the convolutional layers is computationally more demanding, it
also yields better results.
Tan et al. compare different fine-tuning methods on the Wikiart paintings dataset
for style, genre and artist classification. They show that pre-trained CNNs with an
additional softmax layer (genre accuracy: 74.14 %) outperform a pre-trained CNN
with a 1000 dimensional feature extraction layer compressed by PCA and a SVM
trained on top [41]. Zhao et al. tackle the same genre classification problem on
the Wikiart paintings dataset with pre-training on ImageNet and random initial-
ization in the last fully connected layer and achieve an accuracy of 78.03% [47].
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Cetinica et al. [7] evaluate five different fine-tuning scenarios on a range of datasets
including the Wikiart paintings on a CaffeNet architecture [19]: They observe that
retraining all except the first two convolutional layers yields the best results with a
test accuracy of 77.7 %.

Recently, Mohammadi et al. proposed a hierarchical classification approach, based
on clustering the Wikiart paintings dataset styles into 7 super-style parent classes
P each containing image style children C [30]. Then a hierarchical ensemble of
P+1 parallel CNNs predict parent as well as the child class, improving the average
F1-score of a DenseNet121 compared to a hierarchical DenseNet121 by more than
3%. Focusing on the highly imbalanced class distribution of the Wikiart paintings
dataset, Joshi et al.[20] train a semi-supervised Ensemble of Auto-Encoding Trans-
formations (EnAET) model [45]: Instead of pre-training the model, autoencoding
transformations are used to train the classifiers in a four-block wide ResNet-28-2.
When comparing to ResNet50 models with/without data augmentation and fine-
tuned over all layers this approach yields a test accuracy of 82.61% compared to
the ResNet50 baseline of 50.1% [20].

3 Datasets and Classification Tasks

In this paper, we aim to solve two distinct classification tasks for artworks. Both
tasks are to be solved using deep learning models that receive images of the art-
works as input. The first task is to determine the type of an artwork. We distinguish
two types of artworks, drawings and paintings. Examples from both classes are
shown in Figure 1. In the following, we refer to this binary classification task
as "type classification". The second task is a multi-class classification task, where
artworks are to be classified in terms of their genre. The term "genre" is used in
different meanings in existing works. In this paper, we follow the definition from
Cetinic et al. [6] and distinguish between the five classical genres of art: genre paint-
ing, history painting, landscape painting, portrait, and still life. Example images for
each genre are shown in Figure 2. In the following, we refer to this task as "genre
classification".

3.1 Training Set

The main training datasets for both classification tasks consist of images provided
by the Getty Research Institute ("Getty dataset"). All images shown in Figure 1 and
Figure 2 belong to this Getty dataset. The label distribution of the Getty dataset is
very unbalanced: Paintings occur much more frequently than drawings (Table 1).
The most represented genre are landscape paintings with 1156 samples, the least
represented genre are portraits with only 35 samples (Table 2).

To enlarge the training datasets and to address their imbalance, we used data from
additional sources in some of our experiments. For the type classification, a subset
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(a) Drawings

(b) Paintings

Figure 1: Example images from the classes of the type classification task.

Table 1: Datasets that were used for the type classification task (not all datasets
were used in all experiments).

Dataset
Number of suitable training images

Drawings Paintings Total

Bing1
662 0 662

Brill2
185 20 205

Getty 746 4425 5171

Kaggle3,4
1,231 2,270 3,501

Metropolitan5
1,000 0 1,000

Rijksmuseum6
14,223 3,593 17,816

Wikiart7
3,943 0 3,943

All datasets 21,990 10,308 32,298

1 https://www.microsoft.com/en-us/bing/apis/bing-image-search-api
2 https://labs.brill.com/ictestset
3 https://www.kaggle.com/thedownhill/art-images-drawings-painting-
sculpture-engraving

4 https://www.kaggle.com/ikarus777/best-artworks-of-all-time
5 https://metmuseum.github.io
6 https://doi.org/10.21942/uva.5660617
7 https://github.com/cs-chan/ArtGAN/tree/master/data

https://www.microsoft.com/en-us/bing/apis/bing-image-search-api
https://labs.brill.com/ictestset
https://www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving
https://www.kaggle.com/thedownhill/art-images-drawings-painting-sculpture-engraving
https://www.kaggle.com/ikarus777/best-artworks-of-all-time
https://metmuseum.github.io
https://doi.org/10.21942/uva.5660617
https://github.com/cs-chan/ArtGAN/tree/master/data
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(a) Genre painting (b) History painting (c) Landscape

(d) Portrait (e) Still life

Figure 2: Example images from the classes of the genre classification task.

Table 2: Datasets that were used for the genre classification task (not all datasets
were used in all experiments).

Dataset

Number of suitable training images

Genre History
Land-
scape

Portrait Still life Total

Art500k1
14,752 8,394 18,632 19,593 3,467 64,838

Europeana2
11 0 4,368 6,213 1,068 11,660

Getty 763 898 1556 35 421 3673

SemArt3
1,813 8,931 2,779 3,650 1,029 18,202

WGA4
2,897 1,4507 4,474 5,184 1,435 28,497

All datasets 20,236 45,010 42,287 35,984 7,648 151,165

1 https://deepart.ust.hk/ART500K/art500k.html
2 https://pro.europeana.eu/page/search
3 http://noagarciad.com/SemArt/
4 https://www.wga.hu/index1.html

https://deepart.ust.hk/ART500K/art500k.html
https://pro.europeana.eu/page/search
http://noagarciad.com/SemArt/
https://www.wga.hu/index1.html
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of the Brill Iconclass AI Test Set ("Brill dataset") [34], two datasets from Kaggle
("Kaggle datasets"), a dataset from the Rijksmuseum Amsterdam ("Rijksmuseum
dataset") [29], and a subset of the Wikiart paintings dataset ("Wikiart dataset") [41]
were used. Table 1 provides an overview of these datasets. Because the datasets
differ in quality, in some of our experiments only a subset of the datasets was
used. While the Kaggle datasets and the Rijksmuseum dataset included type labels
that were suitable for our type classification task, the other datasets required pre-
processing of the labels: Images labeled as "sketches" in the Wikiart dataset were
assigned to our drawings class. Images from the Brill dataset with the Iconclass
codes "48(+354) / art (+ drawing)" or "48C52 / drawing" were assigned to our
drawings class and images with the iconclass code "48(+351) / art (+ painting)" to
our paintings class. Some images from the Brill dataset were discarded in a manual
filtering step because they differed strongly from the rest of the training data. In
addition to the previously mentioned datasets, we also downloaded training data
from the Collection API of New York’s Metropolitan Museum of Art ("Metropolitan
dataset") [40] and from the Bing Image Search API ("Bing dataset"). In the case of
the Metropolitan Museum API, we retrieved all images from the "Drawings and
Prints" department whose "objectName" property was "drawing". For the Bing Im-
age Search API, we used the search terms "anatomical drawing" and "court sketch"
to retrieve images of drawings. To ensure high data quality, the query results were
filtered manually in both cases.
For the genre classification task, in addition to the Getty dataset, we used a sub-
set of the Art500k dataset ("Art500k dataset") [27], the SemArt dataset ("SemArt
dataset") [13], and data from the Web Gallery of Art ("WGA dataset") [16]. In the
Art500k, SemArt, and WGA datasets, there is no "history paintings" class, but a
"religious paintings" class. Images from this class were classed as history paintings
for our genre classification task. Additional training data for the genre classification
task were obtained from the Europeana Search API ("Europeana dataset") [9]. An
overview of all datasets applicable for the genre classification task is provided in
Table 2. Since the listed datasets differ in quality, not all available training data
were used in all of our experiments.

3.2 Validation Set and Test Set

For both tasks, a split of the Getty dataset was used for model validation ("Getty
validation set"). The validation set for the type classification consists of 1,438 images.
Similar to the Getty training set for this task, it is also very unbalanced: 1,271 of the
images represent paintings, while only 212 images show drawings. The validation
set for the genre classification consists of 1,049 images and is also unbalanced: It
includes 445 landscape paintings, 276 history paintings, 208 genre paintings, 109

still lifes and 11 portraits.
To evaluate the models, another split of the Getty dataset was used, which was
not used to train or validate the models ("Getty test set"). The test set for the type
classification task consists of 750 images. 636 of these are paintings and 114 are
drawings. The test set for the genre classification task consists of 156 images. It
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includes 47 landscape paintings, 37 history paintings, 19 genre paintings, 50 still
lifes, and 3 portraits. For the genre classification task, we also used the SemArt
dataset described in Subsection 3.1 to evaluate some of our models. This dataset
was not used for training the models in these cases.

4 Methods

We have two distinct problem statements: a binary classification whether an image
is a painting or a drawing ("type classification") and a multi-class classification of
an image’s genre ("genre classification"). Our approaches to these two share many
similarities; however, we will also highlight the differences.

4.1 Evaluation metrics for imbalanced datasets

For the Getty dataset, we can trivially construct a classifier with 85% validation
accuracy in the type classification challenge by classifying each image as paint-
ing. When dealing with imbalanced datasets in general, accuracy is not a good
performance metric [3]. Therefore, we use two other metrics that are commonly
recommended for such scenarios: the F1-score and Matthew’s Correlation Coeffi-
cient. Both metrics account for the frequency distribution of the classes.

A hypothetical classification of 24 images, with TP=18, TN=1, FP=3, and FN=2

would yield an F1-score of 88%. This would indicate a good classifier, however
closer examination reveals the following facts: Only one in four drawings is classi-
fied correctly; also, two out of three predicted drawings are actually paintings. One
of the weaknesses of the F1-score is that it is not symmetric; the positive class is
given more "weight" and this choice therefore affects the result. Also, the number of
true negatives (TN) has no impact on the F1-score as it does not influence precision
or recall. If we were to flip positive and negative classes in our example, the F1-
score would drop to 29%. Matthew’s Correlation Coefficient (MCC) is a symmetric
performance measure that is also well-suited for imbalanced datasets. It measures
the correlation between predicted and actual values (obviously, a high correlation
is desirable). It is given by the formula:

MCC =
TP × TN + FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

Because the F1-score was one of the primary metrics by which we were evaluated
in the challenges, we still use it as our primary metric. We also use the MCC as a
"sanity check"; when the MCC and F1-score are too far apart, it indicates that our
model is not performing well across all classes.
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4.2 Type classification

We use the popular DenseNet and ResNet architectures [15, 17]. Motivated by
similar research [23, 37] and initial experiments, we make heavy use of transfer
learning. In particular, we use the ResNet18, ResNet34, ResNet50 and DenseNet201

architectures with weights pre-trained on ImageNet [11], which are provided by
Torchvision [28]. Because of the imbalances in our primary dataset (the Getty
dataset), we pay special attention the the F1-score computed with "drawings" as
the positive class.

Data preprocessing. Our dataset contains images that often exceed a dimension
of 1000 × 1000 pixel. Because of hardware limitations, we are forced to re-scale our
inputs to a smaller size. Additionally, the images are not square. Therefore, we
also apply a quadratic crop before feeding the images to our networks. Although
researchers often re-scale their inputs to 224 × 224, following a convention from
AlexNet [22], we also experiment with input dimensions up to 400× 400. We expect
that larger images contain more information and thus improve the performance of
our models.
In order to further speed up the training process, we re-scaled the entire training
set so that the smaller dimension (width or height) is equal to 400. This way, we can
still apply various cropping techniques but significantly reduce disk I/O, which
was a bottleneck in our initial experiments. In particular, we apply either a centered
or a random quadratic crop. As we observed that some paintings and drawings
are framed or do not fill the entire input image, we also implemented a "random
borderless crop": before applying the random crop, we truncate 20 pixels from
every side of the input image. In most cases, this was sufficient to remove frames
from a picture.
We also used a multitude of different augmentation techniques on our training
images. We experimented with random horizontal flipping, perspective transfor-
mations, color jittering, grayscale transformations, Gaussian blurs and random
rotations, shearing or re-scaling with varying probabilities.

We normalized all images with the channel means and standard deviations from
ImageNet. It should be noted that this is suboptimal and could be improved by
calculating the means and standard deviations of our actual training set; however,
we did achieve satisfactory results.

Model architecture and training details. As mentioned above, we conducted ex-
periments with ResNet50 and DenseNet201. We chose these as the deepest represen-
tatives of their respective classes that we could feasibly train on our hardware. How-
ever, we also ran experiments with smaller versions of ResNet, such as ResNet18

and ResNet34, which have the benefit of reduced training times. We use transfer
learning: the model weights are pre-loaded with weights pre-trained on ImageNet.
As we want to adapt to a new problem space, we replace the fully-connected deci-
sion layers. Whereas the original architectures use only one fully-connected layer
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to produce the one thousand outputs of ImageNet, we also experimented with
using 4 consecutive fully-connected layers with the ReLU activation function. The
motivation is two-fold: firstly, our problem space requires only one output instead
ImageNet’s thousand and we theorized that this additional reduction warrants
additional layers. Secondly, we believe our problem space to be more complex and
additional layers might be able to better capture this complexity. Our best model
for the type classification task uses four such fully-connected layers.
There are two main variants of transfer learning: feature extraction and fine-tuning.
During feature extraction, only the decision layer is trained on the new dataset,
while the rest of the weights are frozen. Therefore, the pre-trained part of the net-
work extracts useful features that the new decision layer then receives as inputs.
During fine-tuning, all weights of the network are re-trained to adapt the entire
network to the new problem space. Of course, one can also re-train only selected
layers such as the last convolutional layer during fine-tuning.

During our experiments, we try feature extraction as well as differing degrees
of fine-tuning. In all cases, we do not freeze the weights of batch normalization
layers. These layers capture statistics of the underlying dataset, which is ImageNet
in the cases of our pre-trained weights. As we use a different dataset, we want these
statistics to be updated according to our new dataset. We found that fine-tuning
leads to superior results compared to feature extraction. Since our dataset consists
of paintings and drawings, which are not part of ImageNet, we expected to achieve
better results when adapting larger parts of our model to the new dataset.

We use the AdaDelta and Adam optimizers [21, 46] and a binary cross-entropy loss.
We run experiments with cosine learning rate scheduling [25], step-wise learning
rate decay, and constant learning rates. We employ a version of early-stopping: after
every epoch, we evaluate our model on the validation set and store the result as
well as the model weights. At the end of the training, we can then choose the model
weights that yielded the best results.

Combating data imbalances. A significant challenge was the imbalance of our
primary dataset. In the following, we detail several different strategies that we
implemented to address this problem.

If we train our models only on the Getty dataset, they will see many more paintings
than drawings. This can be counteracted by sampling drawings at a higher rate
than paintings, so that the model is presented an even distribution between the two
classes. Since we have few original drawings, this should be coupled with strong
augmentation techniques. Otherwise the model might overfit to the drawings that
it is repeatedly shown. There are two "flavours" of this sampling technique: over-
sampling and undersampling. Oversampling works as described by sampling the
minority class at a higher rate, while undersampling works by sampling the major-
ity class at a lower rate to make the two classes balanced. While oversampling has
the drawback of potential overfitting, undersampling can cause loss of information
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as majority-class samples are randomly excluded from the training set each epoch.

Another solution is to use additional datasets that contain drawings to achieve bal-
ance. As can be seen in Section 3, we experimented with many additional datasets.
Because they also did not have an even distribution of paintings and drawings, we
combined the additional datasets with oversampling or undersampling. In some
cases, depending on the additional datasets that were used, paintings became the
minority class and had to be oversampled (or drawings undersampled).
Another approach we have taken is to generate artificial training data. We perform
a rudimentary style transformation of paintings to drawing-like images. Paintings
are first converted to greyscale, then a gaussian filter with a σ of 10 is applied. The
inverted image and the gaussian filter are then overlayed. After the style transfor-
mation, a random resize crop to 224 x 224 pixels, a random horizontal flip and a
normalization is applied. We evaluate transformation probabilities of 1

3 and 1
2 that

regulate the proportion of transformed paintings.

The methods described above operate at the data level: they modify the data so
that the model is not "aware" of the imbalance. We also implemented methods at
the algorithm level; specifically, we use two modifications of the loss function. One is
a weighted loss, where the influence of wrongly classified minority-class samples
on the loss can be increased by a weight factor. The imbalance in the dataset is then
offset by the fact that the minority class has more impact on the loss and therefore
the training process.
Another modification is to use a different loss that incorporates a balancing mech-
anism: the F1-score. This has the added benefit of a closer alignment between the
loss that is used to train the model and the primary metric that we want to opti-
mize. Unfortunately, the F1-score is not guaranteed to be differentiable as there is
the possibility of a division by zero. This problem can be overcome by adding a
small ε = 1e-10 to the denominator wherever this possibility exists. As we want to
maximise the F1-score, we minimize the F1-score subtracted from one as our loss.

Other improvements. We employ test-time augmentation. Using PyTorch’s Five-
Crop and TenCrop modules,1 we feed our model five versions of the same image
at test-time: one crop from every corner of the image as well as the center crop. In
the case of TenCrop, the model is also fed a horizontally flipped version of every
crop. The final prediction is then set to the most common prediction over all crops.
We also experiment with an ensemble of three different ResNet models. As the
ResNet50 model has more parameters than the smaller ResNets, it is more prone
to overfitting, which is why we also included a ResNet34 and ResNet18.

1https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.[Five|Ten]Crop
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4.3 Genre classification

In the genre classification challenge, we implemented two different approaches: an
ensemble-based approach consisting of five one-versus-the-rest classifiers for the
five genres and one single-model approach.
The data preprocessing and techniques to combat data imbalances are analogous to
the type classification described in Subsection 4.2. However, we use an additional
sampling technique: a combination of over- and undersampling. The open-source
ImbalancedDatasetSampler2 aims to achieve a balance between over- and under-
sampling to alleviate their respective drawbacks.

Ensemble model. To classify the five different genres, we train one model for
each genre that classifies whether an image belongs to that genre or not ("one-
versus-the-rest"). These models then build an ensemble. The final predicted genre
is decided by the network that yielded a positive result with the highest confidence.
For the individual models of the ensemble we used the ResNet50 architecture. We
train each ResNet50 model with different combinations of augmentation methods
and learning rate scheduling. We did not do a systematic search for the best combi-
nations but rather made choices based on intuition. Our first ensemble consisted of
the best-performing classifiers for each genre. However, we found that this choice
was not optimal. Through manual experimentation, we found an ensemble where
the individual classifiers were sub-optimal but together, they outperformed the
previous ensemble.

Single model. In contrast to the ensemble approach, we also trained a single
model capable of classifying all genres. We experiment with the same model archi-
tectures mentioned in Subsection 4.2. Because there are five different genres, our
models’ final decision layer now has five outputs instead of just one, which are fed
into a softmax layer. Instead of binary cross-entropy loss, categorical cross-entropy
loss is used.

5 Results and Discussion

In the following, we describe our results for both classification tasks. For the type
classification task, we explored multiple training methods. In the genre classifica-
tion task, we built on these results and used the best training approaches from the
type classification task.

2https://github.com/ufoym/imbalanced-dataset-sampler



5 Results and Discussion

5.1 Type Classification

For the type classification task, we first describe the main findings we obtained
from the exploration of different training methods. Subsequently, we describe the
model with the best overall performance and compare it to some of our other
models.

5.1.1 Impact of Data Augmentation
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Figure 3: Performance of ResNet50 models trained with different data augmen-
tation methods on the unbalanced Getty dataset. In both plots, we show the
F1-score for the drawings class on the Getty validation set.

Since the Getty dataset is comparatively small, we experimented with various
augmentation methods to prevent model overfitting. To identify the most suitable
augmentation methods, we trained ResNet50 models on the Getty dataset with one
augmentation method each and compared them to a baseline model trained with-
out data augmentation. To account for different model initializations, we ran three
trainings with 30 epochs for each augmentation method. We determined the best
model (best F1-score for the drawings class on the Getty validation set) from each
training and report the averaged F1-scores of the best models in Table 3. Details
on the training setting are also provided in Table 3. As shown in Figure 3, con-
verting the training images to grayscale images significantly degrades the model
performance on the validation set compared to the baseline model. Random resiz-
ing and cropping of the training images, on the other hand, slightly improves the
performance on the validation set. For all other augmentation methods we tested,
the performance of the models on the Getty validation set is very similar to that of
models trained without data augmentation.
The fact that converting training images to grayscale images significantly degrades
the training results suggests that the models strongly account for color information
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in discriminating between drawings and paintings. This is surprising given that
only a subset of the training set consists of color images. However, among the
colored training images, paintings are indeed usually colorful, while drawings use
a limited color palette.
One possible explanation for the performance increase achieved by random resiz-
ing and cropping is that it prevents overfitting to certain image features. However,
it is unclear why random cropping does not have a similar effect on model perfor-
mance. Our custom "border cropping" technique that removes image frames led
to a slight decrease in performance. It could be that the image frames, which we
initially thought of as clutter or noise, actually contain information that our model
can learn from.

5.1.2 Coping With Unbalanced Training Data
As described in Subsection 4.2, we implemented several approaches to address
the imbalance in the Getty training set. Below, we describe how these approaches
impact model performance.

Oversampling and undersampling. To examine how oversampling of the minor-
ity class (drawings) or undersampling of the majority class (paintings) affects model
performance, we trained three ResNet50 models for 30 epochs with each sampling
method. To determine the baseline performance, we trained three Resnet50 models
on the unbalanced Getty dataset. We determined the best model (best F1-score for
the drawings class on the Getty validation set) from each training and report the
averaged F1-scores of the best models in Table 4.
We expected that undersampling the majority class would degrade the model
performance because information is lost by randomly discarding training images.
On the other hand, we expected that oversampling would improve the results by
counteracting a model bias in favor of the majority class. However, as our results
in Table 4 show, this did not prove true. All three ResNet50 models achieve very
similar performance on the Getty test set. Similar observations were made when
training models with other architectures, e.g. ResNet18. This demonstrates that
transfer learning yields satisfactory results even on highly imbalanced datasets and
that over- or undersampling techniques are not necessarily needed.

Additional training data. We expected that models trained on larger training
sets would perform better and overfit less. To verify this assumption, we trained
ResNet50 models on the Getty dataset and one additional dataset each. To exclude
differences caused by different distributions of the datasets, we balanced the train-
ing sets by random undersampling. Table 5 shows for each dataset combination
the metrics of the model that achieved the highest F1-score for the drawings class
on the Getty validation set. Despite our assumption, not all datasets improve per-
formance compared to the model trained only on the Getty dataset. Possibly this
is because some datasets differ too much from the Getty dataset in terms of style
and era of the artworks. In particular, the images in the Bing and Brill datasets
differ significantly from those in the Getty dataset. In contrast, the Rijksmuseum
dataset, which is stylistically most similar to the Getty dataset and represents the
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Table 3: Performance of ResNet50 models trained on the Getty dataset with differ-
ent data augmentation methods. The augmentation methods are sorted by the
F1-score for the drawings class on the Getty evaluation set in descending order.

Augmentation
Method

Validation Set Test Set
F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

RandomResized-
Crop

0,974 ± 0,002 0,996 ± 0,000 0,971 ± 0,005 0,995 ± 0,001

No Augmentation 0,956 ± 0,004 0,993 ± 0,001 0,967 ± 0,009 0,994 ± 0,002

ColorJitter 0,959 ± 0,004 0,993 ± 0,001 0,965 ± 0,008 0,994 ± 0,001

Border Cropping 0,946 ± 0,008 0,991 ± 0,001 0,965 ± 0,002 0,994 ± 0,000

RandomPerspective 0,961 ± 0,002 0,994 ± 0,000 0,964 ± 0,000 0,994 ± 0,000

RandomHorizontal-
Flip

0,959 ± 0,005 0,991 ± 0,003 0,963 ± 0,006 0,993 ± 0,001

RandomRotation 0,958 ± 0,004 0,993 ± 0,001 0,962 ± 0,008 0,993 ± 0,001

RandomAffine 0,948 ± 0,004 0,992 ± 0,001 0,961 ± 0,006 0,993 ± 0,001

RandomCrop 0,955 ± 0,005 0,993 ± 0,001 0,954 ± 0,014 0,992 ± 0,002

Grayscale 0,919 ± 0,020 0,986 ± 0,004 0,920 ± 0,022 0,985 ± 0,005

Models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs on the unbalanced Getty dataset. Training images were resized
and cropped to 224 x 224 pixels. A batch size of 100 was used. An Adam optimizer and
a cosine annealing learning rate scheduler were used (initial learning rate: 10−4, ηmin =
0). For all augmentation techniques except border cropping, the implementations from
the torchvision package were used.1 For border cropping, a custom implementation was
used as described in Subsection 4.2. For the augmentation methods from the torchvision
package, the default parameters were used unless otherwise specified below:
ColorJitter: brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1
RandomAffine: degrees=(0, 40), translate=(0.0, 0.4), scale=(0.6, 1.4), shear=0.2, resam-
ple=BICUBIC
RandomCrop: size=224, images were resized to 224 pixels (longer edge) in advance
RandomResizedCrop: size=224, images were resized to 300 pixels (longer edge) in advance
RandomRotation: degrees=360

1 https://pytorch.org/vision/stable/transforms.html

https://pytorch.org/vision/stable/transforms.html
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Table 4: Performance of ResNet50 models trained on the Getty dataset using
different sampling methods.

Dataset
Validation Set Test Set

F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

Getty,
unbalanced

0,956 ± 0,004 0,993 ± 0,001 0,967 ± 0,009 0,994 ± 0,002

Getty, random
undersampling

0,960 ± 0,004 0,994 ± 0,001 0,966 ± 0,008 0,994 ± 0,001

Getty, random
oversampling

0,955 ± 0,006 0,993 ± 0,001 0,965 ± 0,005 0,994 ± 0,001

Models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs. Training images were resized and cropped to 224 x 224 pixels.
A batch size of 100 was used. An Adam optimizer and a cosine annealing learning rate
scheduler were used (initial learning rate: 10−4, ηmin = 0).

largest dataset, yields the model with the best performance. This indicates that
additional, high quality datasets can improve the models. However, the transfer
learning approach allows to obtain satisfactory results even with small datasets.

Artificial training data. Besides acquiring additional training data, we also exper-
imented with algorithmically converting paintings into drawing-like images. The
results of these experiments are listed in Table 6. For each experiment, we report
the highest micro-averaged F1-scor achieved on the Getty validation set. Convert-
ing a portion of the paintings to drawing-like images slightly improved results
over the baseline model. This indicates that the models consider color and edge
information when discriminating between drawings and paintings, as our style
transformation mainly changes colors and edges of the images. This is consistent
with our observation from the experiments with data augmentation, which showed
that color information is very important for the type classification task.

Adapted loss functions. As described in Subsection 4.2, we also tested two cus-
tom loss functions. In the first loss function, the cross-entropy loss of the minority
class was weighted higher by a factor. Intuitively, this factor should be chosen
according to the relation of drawings to paintings in the training set. This did not
prove correct in our initial experiments and we had to manually fine-tune this
factor to give drawings even more weight in order to achieve satisfactory results.
Because of this difficulty and the introduction of yet another hyper-parameter in
form of the weight factor, we discarded this strategy in our further experiments.
Using the F1-score as loss function also did not improve the results. Therefore, for
simplicity, we used only the binary cross-entropy loss in our other experiments.
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Table 5: Performance of ResNet50 models trained on the Getty dataset and one
additional dataset each. The models are sorted by the F1-score for the drawings
class on the Getty test set in descending order.

Dataset
Validation Set Test Set

F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

Getty + Rijksmuseum 0.9644 0.9941 0.9735 0.9953

Getty + Wikiart 0.9573 0.9929 0.96 0.9929

Getty + Metropolitan 0.9567 0.993 0.96 0.9929

Getty 0.954 0.9926 0.96 0.9929

Getty + Bing 0.9571 0.9929 0.9469 0.9906

Getty + Brill 0.9592 0.9933 0.9432 0.9898

Getty + Kaggle 0.9471 0.9914 0.9417 0.9898

The models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs. Training images were resized and cropped to 224 x 224 pixels.
The training sets were balanced by random undersampling and a batch size of 100 was
used. An Adam optimizer and a cosine annealing learning rate scheduler were used (initial
learning rate: 10−4, ηmin = 0).

5.1.3 Model With the Best Overall Performance
The overall best performance in the type classification task was achieved with a
DenseNet201 pre-trained on the ImageNet dataset. We fine-tuned all layers of the
model using the Getty dataset, the Kaggle datasets, the Metropolitan dataset and
the Wikiart dataset. Images were resized to 400× 400. We apply random horizontal
flipping and random affine augmentations3. During training, the drawings class
was randomly oversampled. The model optimization was done using the binary
cross-entropy loss, a constant learning rate of 0.005 and the AdaDelta optimizer.
When generating predictions, we used FiveCrop for test-time augmentation, as
described in Subsection 4.2. With this configuration, we achieve an F1-score of
0.9825 for the drawings class on the Getty validation set. On the Getty test set, we
achieve an F1-score of 0.9739 for the drawings class and an F1-score of 0.9953 for
the paintings class (Table 7). Overall, this is our best result, but we have obtained
similar results with other model architectures and configurations. For example,
the ResNet50 listed in Table 7 that was trained on the Getty and the Rijskmusuem
dataset, yields almost the same performance. However, the ensemble model listed in
Table 7 did not improve the results. Considering the comparatively low complexity
of the type classification task, satisfactory results can also be obtained with flatter
models, e.g. ResNet18 models. Due to the transfer learning approach, good results
are usually achieved after only a few training epochs, allowing to train models for
type classification even with limited computational resources.

3https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomAffine
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Table 6: Performance of ResNet18 models trained on the Getty dataset, with a vary-
ing proportion of paintings algorithmically converted to drawing-like images.

Dataset Micro F1-Score

Getty 0.9256

Getty, 1/3 of paintings converted to drawings 0.9357

Getty, 1/2 of paintings converted to drawings 0.9365

The models were pre-trained on ImageNet; batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs. Training images were resized and cropped to 224 x 224 pixels
and a batch size of 32 was used. An Adam optimizer and a constant learning rate of 10−3

were used.

Table 7: Performance of selected models in the type classification task. The mod-
els are sorted by the F1-Score for the drawings class on the Getty test set in
descending order.

Model
Validation Set Test Set

F1-Score for
Drawings

F1-Score for
Paintings

F1-Score for
Drawings

F1-Score for
Paintings

DenseNet201 0.9749 0.9959 0.9739 0.9953

ResNet50 0.9644 0.9941 0.9735 0.9953

Ensemble of Resnet18, Res-
net34 and Resnet50

0.969 0.9949 0.96 0.9929

ResNet34 0.9592 0.9933 0.9553 0.9922

ResNet18 0.9596 0.9933 0.9391 0.9890

The DenseNet201 was trained on the Getty dataset, the Kaggle datasets, the Metropolitan
dataset and the Wikiart dataset. The ResNet50 was trained on the Getty dataset and the
Rijksmuseum dataset. The ResNet34 and the ResNet18 were trained on the Brill dataset, the
Getty dataset, the Kaggle datasets and the Rijksmuseum dataset. In the ensemble model,
the predictions of the ResNet18, the ResNet34 and the ResNet50 were combined by a
majority vote.
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5.2 Genre Classification

Building upon the results of the binary type classification task, we approach the
multi-class genre classification with single model setups of different architectures,
as well as ensemble-based approaches.

5.2.1 Single Model Approaches
For the single model approach, we used two different architectures, ResNet50 and
DenseNet201. Table 8 compares the results obtained with both architectures. There,
we report the highest micro-averaged F1-score achieved on the Getty validation set
for each model.
To determine the baseline performance for the DenseNet201 architecture, we fine-
tuned a model on the Getty and Art500K datasets. In this baseline configuration,
all layers were fine-tuned and the training set was balanced by random oversam-
pling. In Table 8, this baseline model is compared to a model that was trained with
cosine annealing learning rate scheduling [25]. We observe that the model without
learning rate scheduling performs slightly better and achieves a 0.3% higher micro
F1-score. We observed only small differences between the FiveCrop and TenCrop
test-time image augmentations. FiveCrop performed better in our final model but
we do not believe that this observation is generalizable. The overall best model of
the DenseNet201 architecture achieves a micro F1-score of 0.924. For this model, we
resized and cropped the images to 400 x 400 pixels and applied random horizontal
flipping and random affine transformations for data augmentation.
For the ResNet50 architecture, we use a model as baseline with only the softmax
classifier fine-tuned. Compared to the baseline model, a model trained with the
Pytorch "reduce learning rate on plateau" scheduler4 achieves a 0.3% higher micro
F1-score. Using the ImbalancedDatasetSampler5 we improve the baseline micro
F1-score by 3.4%. For type classification, we observed that unfreezing the last con-
volutional layers and the classifier results in further improvements. We therefore
evaluate the impact of retraining layers in combination with the previously ex-
plained balancing technique for the genre classification. We note that retraining
three layers outperforms retraining five layers and results in an overall best run of
the ResNet50 with a micro F1-score of 0.931.

5.2.2 Ensemble model approach
Besides single models, we also experimented with ensemble models in the genre
classification task. As described in Subsection 4.3, our ensemble models consist
of five one-versus-the-rest ResNet50 classifiers where each classifier is trained to
detect one genre class. For each of the five classifiers, we evaluate the impact of
data augmentation and learning rate scheduling. For all genres, we use ResNet50

models pre-trained on the ImageNet dataset. For the portrait class, we addition-

4https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.
ReduceLROnPlateau

5https://github.com/ufoym/imbalanced-dataset-sampler

https://pytorch.org/docs/stable/optim.html##torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/optim.html##torch.optim.lr_scheduler.ReduceLROnPlateau
https://github.com/ufoym/imbalanced-dataset-sampler
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Table 8: Results of our experiments with single models of DenseNet201 and
ResNet50 architecture in the genre classification task.

Experiment Configuration Micro F1-Score

DenseNet201

Baseline Baseline configuration1
0.924

Learning rate Cosine annealing scheduling 0.921

ResNet50

Baseline Baseline configuration2
0.838

Learning rate Reduce on plateau scheduling 0.841

Balancing Imbalanced sampler 0.872

Retraining
3 layers retrained3

0.928

5 layers retrained4
0.881

1The DenseNet201 models were pre-trained on ImageNet; all layers were fine-tuned for 30

epochs using the Art500k dataset and the Getty dataset. The training set was balanced by
random oversampling and a batch size of 32 was used. A constant learning rate of 10−3

was used in the baseline configuration.
2The ResNet50 models were pre-trained on ImageNet; the classifier was fine-tuned for
30 epochs using the Getty dataset. A batch size of 32 was used. A constant learning rate
of 10−3 was used in the baseline configuration. Both retraining configurations used the
ImbalancedDatasetSampler for balancing.
3 Retraining of conv. 4, conv. 5 and fc.
4 Retraining of conv. 2, conv. 3, conv. 4, conv. 5 and fc.
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Table 9: Performance of ResNet50 models trained to detect one genre each (one-
versus-the-rest) using different data augmentation techniques and learning rate
schedulers.

Experiment

Class
Portrait,

ImageNet
Portrait,

VGGFace2

Genre History Still life Landscape

Stepwise LR
decay

0.474 0.545 0.728 0.899 0.53 0.9

Cosine Ann.
Scheduler

0.439 0.390 0.705 0.9 0.545 0.918

Stepwise LR
decay with data
augmentation

0.428 - 0.572 0.841 0.472 0.762

Cosine ann.
scheduler with
data
augmentation

0.342 0.5 0.592 0.702 0.395 0.734

The models were pre-trained on ImageNet, for the portrait class an additional model
pre-trained on VGGFace2 was evaluated. Batch norm, conv. 4, conv. 5 and fc. layers were
fine-tuned for 30 epochs on the Art500k, Europeana, Getty and WGA datasets. Training
images were resized and cropped to 224 x 224 pixels. The training sets were balanced
by random undersampling and a batch size of 115 was used. An Adam optimizer was
used. For stepwise learning rate decay, the initial learning rate was set to 10−3 and the
step size to 4. For cosine annealing learning rate scheduling, the initial learning rate was
set to 10−4 and ηmin to 0. The transformations RandomGrayscale, RandomPerspective and
RandomHorizontalFlip from the torchvision package were used for data augmentation 1.

1 https://pytorch.org/vision/stable/transforms.html

https://pytorch.org/vision/stable/transforms.html
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Table 10: Performance of two ensemble models for genre classification on the Getty
validation set and on the SemArt dataset. Ensemble 1 is a combination of the
best individual models from the experiments presented in Table 9. Ensemble 2

was created by exploring various single model combinations.

Genre
Ensemble Model 1 Ensemble Model 2

F1-Score on
Getty

F1-Score on
SemArt

F1-Score on
Getty

F1-Score on
SemArt

Genre 0.757 0.5101 0.7646 0.5237

History 0.763 0.8542 0.7467 0.8631

Landscape 0.9154 0.8574 0.9145 0.8658

Portrait 0.8 0.6949 0.8 0.7736

Still life 0.9507 0.7434 0.9507 0.7711

Both Ensemble models consist of one individual ResNet50 classifier per genre category
pretrained on ImageNet. Batch norm, conv. 4, conv. 5 and fc. layers of each ResNet50 were
fine-tuned for 30 epochs on the Art500k, Europeana, Getty and WGA datasets. For details
on the training setting, see Table 9. In both ensemble models, the prediction of the classifier
with the highest confidence was used as final prediction.

ally evaluate an InceptionResNet pre-trained on the VGGFace2 dataset [5] for face
recognition. Table 9 shows the performance of the best single models for these
different experimental settings. For each model, we report the highest F1-score that
was achieved on the Getty validation set. For landscape paintings we observe a
baseline F1-score of 0.9 which is the highest baseline score over all classes. Data
augmentation reduces the F1-score by 14%. This decrease caused by the use of aug-
mentation is observed throughout all single models of the ensemble with varying
margins. Fine-tuning with cosine annealing learning rate scheduling improved the
F1-scores of the landscape, history and still life classifiers up to 1% compared to
the stepwise learning rate decay. For the classification of the genre paintings class
the use of stepwise learning rate decay outperforms the cosine scheduling by 2.3%.
A similar effect is noticeable for the InceptionResNet classifier for the portrait class
where the the F1-score drops by 15% when using the cosine annealing learning rate
scheduling. Comparing the ResNet50 and the InceptionResNet for classifying the
portrait class, we notice that they both perform better without image augmentation
but the InceptionResNet shows slightly higher confidence.

When selecting the individual models for the ensemble, we compared a combi-
nation of the best individual models (Ensemble 1) with a trial-and-error ensemble
(Ensemble 2) whose composition was guided by intuition. Table 10 shows that both
ensemble models perform similarly on the Getty validation set. When validated on
the SemArt dataset, Ensemble 2 performs slightly better. In particular, Ensemble 2

achieves a higher F1-score for the history paintings class on the Semart dataset. We
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therefore conclude that Ensemble 2 shows increased robustness compared to the
best-of-model.

6 Conclusion

In this work, we successfully applied deep learning models to two image classifica-
tion tasks from the art domain. In the type classification of artworks, our models
achieve human-like accuracy. As expected, the genre classification of artworks
turned out to be more a complex problem. Building on our results, future work
should aim to further improve model performance for this classification task.
Overall, our results demonstrate that the transfer learning approach can produce
very good results even on small, highly unbalanced training datasets. By using
additional training data and employing random resizing for data augmentation,
we were able to further improve the performance of our models. In contrast, most
data augmentation methods, over- and undersampling techniques, and adjust-
ments to the loss functions did not yield any benefits. Ensemble learning also did
not improve the results compared to the single-model approach. Since most of
our experiments rely on a comparatively small number of training runs, future
work should strive for additional statistical evidence. In particular, the impact of
data augmentation and over- or undersampling techniques likely depends on the
training datasets and should therefore be further investigated.
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